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The istiophorid family of billfishes is characterized by an extended rostrum or
‘bill’. While various functions (e.g. foraging and hydrodynamic benefits) have
been proposed for this structure, until now no study has directly investigated
the mechanisms by which billfishes use their rostrum to feed on prey. Here, we
present the first unequivocal evidence of how the bill is used by Atlantic sail-
fish (Istiophorus albicans) to attack schooling sardines in the open ocean. Using
high-speed video-analysis, we show that (i) sailfish manage to insert their bill
into sardine schools without eliciting an evasive response and (ii) sub-
sequently use their bill to either tap on individual prey targets or to slash
through the school with powerful lateral motions characterized by one of
the highest accelerations ever recorded in an aquatic vertebrate. Our results
demonstrate that the combination of stealth and rapid motion make the sailfish
bill an extremely effective feeding adaptation for capturing schooling prey.

1. Introduction

The billfishes (i.e. swordfish, spearfish, sailfish and marlins) are some of the
most enigmatic marine species and are among the fastest swimmers in the
ocean [1]. They have a global distribution and some species can reach body
lengths of up to 5 m (see the electronic supplementary material, table S1). Bill-
fishes are top predators, highly specialized for life in the pelagic environment
[2] and have unique body adaptations in the form of an extended rostrum or
bill. The primary functions of this structure have been the subject of much
speculation. Information on billfish predation comes mainly from studies of
stomach content, which reported gashes on the bodies of prey fish found in
the stomachs of billfishes [3,4] and from these injuries studies have inferred
that the bill might be used as a weapon for prey capture. However, more
recent work has shown that the prey’s bodies can be injury-free [5] which is
consistent with the observation of billfishes that are in good body condition
but whose bills have broken off or are severely bent [6]. This has called into
question whether the bills are in fact required for prey capture [6]. Alternatively,
it has also been suggested that the main function of the bill is a reduction in
drag while swimming [1,7].

To date no study has directly examined the role of the bill in billfish feeding be-
haviour nor quantified the response of the prey to billfish attacks. In contrast to most
billfish, the Atlantic sailfish’s (Istiophorus albicans) diurnal and social feeding ecology

© 2014 The Author(s) Published by the Royal Society. Al rights reserved.
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offers a rare and accessible opportunity to study bill use in these
pelagic predators. Sailfish typically hunt in groups to drive large
schools of their prey to the surface for presumably easier capture.
This feature of their foraging behaviour allows a unique oppor-
tunity for relatively easy tracking from boats (see Material
and methods) as well as close underwater observations of
predator—prey interactions. Here, we present the first direct
evidence of how the bill is used to capture evasive prey through
a combination of stealth and extremely rapid motion.

2. Material and methods

To investigate the role of the bill in predation and the anti-predator
response of the prey, we collected high-speed and high-definition
video footage of group-hunting Atlantic sailfish (I. albicans) that
attacked schools of adult sardine (Sardinella aurita), 30—70 km off-
shore from Cancun, Mexico (21 28.3-41.15 N, 86 38.41-41.30 W).
Observation was carried out near the surface (0-5m depth;
water depth 30-40 m) between 10.00 and 16.00 h over a 6-day
period in February 2012. Sailfish—sardine interactions were located
by tracking groups of avian predators (e.g. frigate birds, Fregata
magnificens; pelicans, Pelecanus occidentalis) flying above the sardine
schools. High-speed and high-definition video recordings of preda-
tion events were made using Casio EX-FH100 high-speed cameras
and a HD GOPRO HERO video camera, respectively. In total, 180
and 84 min of recording were obtained for high-definition and
high-speed videos, respectively. Based on video footage, we esti-
mated the number of sailfish involved in attacks on sardine prey
schools (1 = 6-40) and the size of the school itself upon encounter
(10-1000+). Fin extension (dorsal and pelvic fins) in sailfish was
recorded during predatory events. Gut content analysis of sardines
from a sailfish specimen (180 cm from the tip of the bill to the end of
caudal fin) caught by professional fishermen, showed that prey size
was relatively uniform (n = 14; Lg mean total body length + s.d. =
19.0 + 0.2 cm, range 18.5-19.3 cm) and typical of adult sardines
(www.fishbase.org).

From the recordings, we gathered (i) quantitative analyses of
the behavioural sequence of predation events (Markov chain),
(ii) kinematic analyses of bill motion and (iii) behavioural
responses of the prey.

(a) Markov chain
Markov chain analysis was based on high-definition videos. All
modelled sequences start in state ‘approach’” and end in state
‘departure’. The probabilities of each state of predation behaviour
were estimated from the observed relative frequencies of the state
changes. The durations of the states are not part of the model (i.e.
the model’s probability for a state being followed by the same state
is always 0) and the probabilities for leaving the end state ‘depar-
ture” are left unspecified because our observations ended in this
state. A sailfish might start another attack sequence, swim away,
or perform another action, which we did not observe.

We identified 10 main states of sailfish predation behaviour:
(i) prey herding, (ii) chasing, (iii) approach, (iv) imminent attack
(bill inside or in close proximity to school), (v) attack (including
both slash and tap), (vi) prey contact (when the bill makes physical
contact with one or more sardines), (vii) prey handling (redirection
of prey towards mouth using bill), (viii) capture/ingestion, (ix)
reapproach (in an instance when capture/ingestion was unsuccess-
ful) or alternatively, (x) departure. This process can be repeated
until every individual in the prey school is caught and consumed.

(b) Kinematic analyses of bill motion
We performed kinematic analyses of bill motion during slashing
focusing on speed and acceleration since both can play an

important role in predator—prey interactions of fish [8]. High-
speed video footage of slashing events was recorded at 240 fps
and analysed using WinAnalyze (www.winanalyze.com). From
high-speed video footage, the X and Y coordinates of the sail-
fish’s centre of the head (Hy; the point centred between the
eyes), the front of the head (Fy, the point where the front of
the head meets the base of the bill) and tip of the bill (Ty) for
each focal sailfish were digitized for every frame (with
4.167 ms between frames) beginning at five frames before a slash-
ing event and ending 25 frames after the slashing event.
Observations of slashing manoeuvres (1 =15) were based
on top-view recordings of slashing events allowing two-
dimensional analyses of the motion. In some instance, a few
frames of footage for T were obscured by sardines, although
Hg¢ and Fy¢ were always visible. In these cases, T, was estimated
based on the fixed length of the bill (i.e. the fixed distance
between Fg and Ty, as a prolongation of the segment Hg—Fs).
Distances were estimated on the basis of the sardines (i.e.
length = 19 cm based on sailfish stomach content data) affected
by the slash and therefore in the same plane as the sailfish bill,
and judged to be swimming in the plane perpendicular to the
camera lens. Sailfish and bill length in specimens that were
fully visible were also estimated (1 = 5).

The following variables were analysed: (i) maximum slashing
speed and acceleration at three points Hy, Fsf and T (ii) mean
slashing speed at Ty (iii) mean turning rate (TRpean), Which
is a measure of the angular velocity of the bill during the slashing
manoeuvre. TRe.n Was calculated as the angle (ai) between
the segment joining the points Fs and Ty, at the beginning and
end of the slashing motion, divided by the slashing duration
(Ds). Hence TRpean = @tot/Ds. A five-point differentiation-
based smoothing method was then applied for each derivative
procedure (i.e. speed and acceleration [9]).

(c) Behavioural responses of the prey

To analyse the sardines” behavioural response to the presence of
the sailfish bill, 28 slashing events from our high-speed record-
ings were analysed. Two variables were measured: (i) the tail
beat frequency (number of tail beats (a complete oscillation
cycle of the tail) per second) and (ii) overtaking behaviour (i.e.
the number of body lengths that a focal fish gained on an indi-
vidual swimming directly in front of it, expressed in number of
body lengths overtaken per second). We focused on three differ-
ent phases (pre-bill contact, bill contact and post-bill contact).
Since not all phases were visible in all recorded events, we
present final sample sizes per phase. In the pre-bill-contact
phase, the bill approaches the prey but does not enter the
school. The end of this phase is marked by bill entrance in
the school (n = 23; mean duration + s.d. = 0.4 + 0.05 s, range =
0.21-0.42 s). The bill-contact phase begins when the bill of the
sailfish enters the sardine school and ends when the actual slash-
ing event starts (n =21, mean duration +s.d. =0.28 +0.07 s,
range = 0.19-0.42 s). The post-bill-contact phase starts after the
actual slash and lasted for a maximum of 0.42 s (100 frames) or
shorter when the fish could not be observed on the recordings
for that period (17 =28, mean duration +s.d.=0.39 £+ 0.06s,
range = 0.22-0.42s). A target fish was defined as the closest
observable fish to the bill of the sailfish. A control fish was
defined as the first observable fish that was swimming in front
of the target fish and was not within the bill strike zone (i.e.
the area that was impacted by the slash).

3. Results

Individual sailfish either made predation attempts or redir-
ected the sardines by swimming through or around the
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Figure 1. (a—e) A slashing sequence (interval between panels: 10 frames,
i.e. 41.67 ms) of a sailfish ‘slash” attack. In (c—e), the bill makes contact with
at least five sardines and the detached scales from injured fish can be seen.
(Online version in colour.)

prey school. All observed attacks were carried out by single
sailfish that approached the sardine school. Multiple sailfish
were never observed attacking the school at the same time.
An attack was initiated when no other sailfish was within
approximately one sailfish body length of the school. After
approaching the school of sardines from a posterior position,
sailfish inserted their bill into the school and then used it in
one of two distinct ways: ‘slashing” (figure 1; see the elec-
tronic supplementary material, movie S1) and ‘tapping’ (see
electronic supplementary material, movie S2). Slashing con-
sisted of a forceful, rapid lateral movement of the bill
through a large section of the school wherein the bill typi-
cally made physical contact with multiple fish causing
bodily damage to the prey (figure 1; see the electronic sup-
plementary material, movie S1). Given its relatively low

success rate in terms of direct prey capture (10%), the pri- n

mary function of slashing was presumably to inflict injury
to facilitate later capture. Tapping, by contrast, consisted of
a targeted short-range movement of the bill which destabi-
lizes a single sardine (see the electronic supplementary
material, movie S2) and more often resulted in successful
prey capture (33%). The effectiveness of capturing single
prey using tapping may be related to the surface properties
(i.e. presence of lateral denticles) of the bill (see the electronic
supplementary material, figure S1). All of our videos of the
attacks show that sailfish always swam with the dorsal fin
(i.e. the sail) and their pelvic fins extended, both during
and prior to slashing and tapping events. Furthermore, lateral
sides of the sailfish’s body, which are normally bluish-silver,
darkened to almost black just before an attack. In addition, in
some cases, sailfish also displayed vertical stripes and lateral
blue and orange spots during attack and posturing around
the sardine schools.

The feeding behaviour of the sailfish was highly ordered
and the behavioural states of attack sequences for the sailfish
were modelled using transition probabilities of a first-order
Markov chain (figure 2). Total observed frequencies of the
main states were: approach 245, imminent attack 235, attack
(tap) 103, attack (slash) 111, prey contact 172, prey handling
75, capture/ingestion 43, reapproach 74. Behavioural states
1 and 2 (herding and chasing) are not included in the
Markov chain because they are not part of the actual attack
sequence. The most probable transitions are the following:
approach almost always leads to the bill going into a school
(i.e. imminent attack state, 79%) and this is followed by
attack (i.e. slash, 44%; tap, 42%). Both slash and tap lead to
contact, in most cases (i.e. 71% and 89%, respectively). After
contact, however, the following behavioural states are less pre-
dictable. Nevertheless, the path with the highest probability
gives a clear account of a typical capture sequence: approach,
imminent attack, tap/slash, prey contact, prey handling, cap-
ture/ingestion and departure. Spearing was never observed
in sailfish hunting on sardines.

The kinematic analysis of slashing motion shows that the
bill reaches a TRean Of 575.1 + 205.2° s L. These values are in
line with expectations for a 1.5 m long fish (i.e. a sailfish without
its 30 cm bill ‘extension’ (see the electronic supplementary
material, text)). Much of the effectiveness of slashing can be
attributed to the rapid lateral rotation of the bill and consequent
swift motion of the bill tip. Because of the rotation, the maxi-
mum speed and acceleration measured at Ty were higher
(62+15ms™ ' and 131.6+485ms 2, respectively) than
those measured at Fs (3.6+12ms ' and 69.0+342ms 2,
respectively) and Hy (2.3+0.6ms ' and 432+185ms ?,
respectively; figure 3a). Speed and acceleration differed
among Hy, F¢s and T (figure 3a; one-way repeated measures
ANOVA p < 0.001 in both cases; Tukey post-hoc test, all p <
0.01). Based on the speed and acceleration of the bill tip, the esti-
mated maximum swimming performance and the reaction time
of a fish the size of a sardine (see the electronic supplementary
material, text), sardines are not expected to be able to avoid
being hit by a slashing bill.

The comparison of the behaviour of target fish in each
phase to that of control fish allowed us to test whether sardines
in the strike zone reacted to the presence of the bill by anticipat-
ing a slashing event. Surprisingly, we found no significant
behavioural differences between target and control fish when
the bill was inserted in the prey school during the bill-contact
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Figure 2. State transitions of a first-order Markov chain modelling changes of behavioural states in attack sequences of sailfish. Screen captures from videos are
shown for each behavioural state. The line widths of the edges are proportional to the transition probabilities (see inset). For the sake of darity, only transitions with
a probability of at least 0.1 were included. (Online version in colour.)
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phase (Wilcoxon matched pairs test, p > 0.05; figure 3b). After a
slash (i.e. post-bill-contact phase), however, both target and con-
trol fish had increased values for all behaviours (p < 0.01) and
the behavioural change was significantly higher for target
than for control fish (p < 0.01; see the electronic supplementary
material, text). This increase in speed after a slash shows that sar-
dines are not swimming at maximum performance when the
bill is inserted in the fish school. Nevertheless, they do not
show any avoidance behaviour when the bill is inserted which
strongly suggests that the presence of the bill goes undetected.

4. Discussion

Using a combination of behavioural and kinematic analyses,
we identified the underlying mechanistic basis of an extreme
morphological feeding adaptation that is specially suited to
the capture of schooling prey.

Our analyses show that sailfish use their bill to isolate and
capture prey through two main attack strategies (i.e. tapping
and slashing) and that bill-tip acceleration during slashing is
comparable to the highest values ever recorded in any
aquatic vertebrate, including both swimming and body part
movements [10-13]. The recorded speed of the bill tip
was much higher than that potentially obtainable for the
swimming motion of a fish the size of a sardine (see the elec-
tronic supplementary material, text). Expected reaction time
and maximum speed of sardines (see the electronic sup-
plementary material, text) further corroborate that they are
unlikely to be able to avoid the strike. Therefore, by having
a thin and rigid prolongation at the head, sailfish manage
to move part of their body (i.e. the bill tip), at a translational
speed that is too high for prey to react in time to avoid being
struck, even though the sailfish rotational performance lies
within expectation for a fish of the same body length but
without bill extension (see the electronic supplementary
material, text). Based on morphological data from other
billfish species and the relationship between mean turning
rate and body length, such high translational speeds at the
bill tip are also expected for other billfish species (see the
electronic supplementary material, text and table S1).

Despite the fact that billfishes are considered to be among
the fastest fish species [1], sailfish did not rely on rapid swim-
ming for prey capture. On the contrary, prior to the critical
stages of an attack (i.e. slashing or tapping) sailfish swam
directly behind and at similar speeds to the sardine schools
(1.17 m s %; see the electronic supplementary material, text),
which are much slower than those theoretically attainable by
such large predators [14]. Previous work on other billfishes
(blue marlin Makaira nigricans) also suggests that they spend
most of their time swimming slowly, i.e. at speeds less than
1.20ms™ ! for 97% of the time, reaching speeds of around
2ms ' only occasionally [15]. While early estimates (ca
1940s-1960s) of the swimming speeds of billfishes (reviewed
in [15]) suggested that billfishes can reach swimming speeds as
high as 36 m s, recent theoretical work suggests that the maxi-
mum swimming speed of fish and cetaceans can attain at shallow
depth is in the order of 10-15ms ™" [14]. Clearly, work using
modern recording techniques (e.g. accelerometers) is needed to
clarify this discrepancy and to obtain more accurate field
measurements of maximum speeds in large aquatic vertebrates.

Based solely on speed, large fish are expected to eventually
catch small fish, but when manoeuvrability and acceleration

are taken into account, large fish are often at a disadvantage
[11,16]. Therefore, the use of morphological adaptations that
can be manoeuvred effectively, such as the sailfish bill, can
be critical for overcoming these challenges thereby allowing
large predators to catch their evasive smaller prey. Extended
bills can also be found in non-billfish species (e.g. paddlefishes
and sawfishes) where they are believed to be used primarily for
sensory detection and prey manipulation [17,18] rather than
direct capture. In some instances, posterior extensions of the
body in a number of vertebrates (e.g. tails of killer whales Orci-
nus orca) can also be moved more rapidly than the whole body
itself and are used by various large aquatic predators to facili-
tate prey capture [10,13,19,20]. Previous work suggests that
the feeding behaviour of large aquatic vertebrates (both
in fishes and cetaceans) involving whole-body attacks is largely
determined by the predator—prey size ratio [11,16]. The
smaller the prey is relative to its predator, the higher the
prey’s advantage in terms of manoeuvrability. Large aquatic
predators such as billfishes, dolphins and humpback whales
(Megaptera novaeangliae) can reduce the disadvantage between
prey and predator manoeuvrability by concentrating, disturb-
ing and disorienting prey [16]. This can result in alternatives
to whole-body attacks on single prey, such as attacking as a
group or the use of weapons (e.g. tails and bills) which can
deal with a concentrated group of prey by slapping and slash-
ing them and then consuming stunned and injured individuals
[21]. When prey items are much smaller than their predators
(i.e. less than 1072 predator length) as in the case of baleen
whales and whale sharks, filter feeding is used [16]. In these
cases, while the small prey item may indeed have a higher
manoeuvrability than their predator, the difference in size is
so large that once the prey is targeted, its speed is too low to
avoid the predator’s huge gape [11].

While it is unlikely that the sardines could avoid a slash, the
possibility that they actively avoided the bill prior to the swing-
ing motion was also investigated. We observed no evasive
behaviour by the sardines in response to the insertion of the sail-
fish bill into the school. The reaction of a fish to an approaching
predator generally occurs at a distance that is related both to the
speed of the predator and its body depth [22,23]. Predators with
narrow profiles, such as sailfish, can get extremely close to their
prey without eliciting an escape response [24]. The bill gives the
sailfish an additional predatory advantage as the thin bill rep-
resents a stealthy object that creates minimal hydrodynamic
or visual disturbance to the prey.

Slashing behaviour often resulted in the removal of scales
but immediate prey death as a result of bill contact was never
observed. Repeated slashing by different individual sailfish
was observed, resulting in accumulated bodily damage to
many sardines in each group. While the chasing of prey is
widespread among predators in both aquatic and terrestrial eco-
systems, inflicting bodily damage gradually and over prolonged
periods is more typical of pack-hunting animals such as
wild-dogs (Lycaon pictus), wolves (Canis lupus) and killer
whales (Orcinus orca) with tightly regulated group membership
based on individual recognition [25], whereas gregarious pelagic
teleosts are generally believed to live in fission—fusion groups
[26] (but see also [27]). By contrast, tapping behaviour is so
subtle that it probably leaves little or no detectable traces
on the body despite the fact that it is a highly efficient capture
technique. The latter might explain why stomach content ana-
lyses have produced such inconsistent results (i.e. prey with
and without gashes on their bodies [3,5]).
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Sailfish attacks were accompanied by changes in body
posture, colour and pattern which might have multiple func-
tions. The erect dorsal fin (i.e. sail) and pelvic fins probably
act as control surfaces to increase body stability [28,29]. We
therefore postulate that these fin extensions enhance the accu-
racy of tapping and slashing. In addition, dorsal fin extension
was also observed prior to attacks and therefore it may aid in
‘herding’ prey fish. The colour and pattern changes along the
body might be related to intra-specific communication.
Sailfish always attacked one at a time (even when up to 40
of them were present around a school of prey) presumably
because of the risk of injury when slashing. Whether and
how they signal to each other to establish feeding order is a
topic in need of further investigation.

Morphological studies indicate large differences in bill
morphology between different billfish species (e.g. long
oval bills with lateral denticles in sailfish (see the electronic
supplementary material, figure S1)) and shorter ones in

marlins and very long smooth, flat, sword-like bills in sword- n

fish [30,31] (see the electronic supplementary material, table
S1) which strongly suggest that they serve different functions.
Another striking morphological feature of sailfish is their
large dorsal fin (i.e. the sail) which is considerably smaller
in other billfishes. Its role in herding schooling fish and/or
stabilizing the body of the sailfish during slashing requires
further investigation. Clearly, comparative studies regarding
the morphology and behaviour of different billfish species
are needed to shed further light on the evolution of these
remarkable morphological features.
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